
Why Developer Experience
Matters and How
Continuous Code
Improvement
Can Help

eBook

3 Introduction

4 Part 1: The Case for Developer Happiness

5 Part 2: What’s at the Bottom of Developer Dissatisfaction?

6 Part 3: Elite Teams are Made Up of Happy Developers

7 Part 4: It’s Time to Take a Fresh Approach

8 Part 5: Anyone Call for a Developer Experience Engineer?

9 Part 6: Introducing Continuous Code Improvement

10 Part 7: Jumping Back into the Flow with CCI

11

11

11

11

12

Part 8: Anyone Call for a Developer Experience Engineer?

Rethinking Developer Culture

Shorter Release Cycles

Tackling Issues Proactively

Don’t Do it Alone

13 Part 9: Conclusion

Table of Contents

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 3

Introduction

When’s the last time you took a good look at
your engineering team? Are they energetic
and bright-eyed—or are they bent over
their screens with a look of total stress and
frustration? This question is more important
than you may think.

Research is beginning to recognize that
developer satisfaction is affected by deeper
issues regarding coding culture and product
quality. And these culture and quality
issues can serve as an important wake-up
call to uncover considerable flaws in your
development lifecycle.

In this article, we examine the roots of software
engineers’ frustration and the insights this can
shed on the development lifecycle. We then
get down to business, showing you how to
address these issues through continuous code
improvement (CCI).

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 4

Believe it or not, your team’s output isn’t just
determined by brain power or working harder,
but by something much more basic: happiness.

Happiness has a direct impact on work quality and productivity.

One study conducted by Oxford University’s Saïd Business School

found that happy employees are 13% more productive at work.

The link between satisfaction and productivity is even more

pronounced when it comes to software development.

According to research presented in the book Rethinking

Productivity in Software Engineering, unhappy developers are

alarmingly less productive at the workplace. These individuals are

more prone to missing deadlines, producing poorly written code,

discarding work, and deviating from work timelines. In addition,

they exhibit low motivation, mental angst, and impaired cognitive

performance. And these issues are exacerbated when you take

peer effects into account.

Emotions are contagious. This is especially problematic in

the workplace where one subpar employee can degrade the

performance of other employees. Sigal Barsade, from the Wharton

School of Business, found that the thoughts, emotions, and

practices of just one employee can negatively affect entire teams

in unexpected and damaging ways. Harvard Business Review

backed this up, claiming that the “bad behaviors of one employee

spill over into the behaviors of other employees through peer

effects.” In other words, dissatisfaction can spread like wildfire.

So what can companies do about this? It may be tempting to think

of happiness as something beyond your control and simply blame

things like disposition, innate laziness, or family troubles. But the

truth is much more interesting: Your developers’ unhappiness is

closely linked to the actual product they are working on.

A recent survey of 1,300 developers found that software engineers’

dissatisfaction is four times more likely to be due to what they are

working on (both the artifact and process)—not personal reasons.

This is a powerful discovery. It means that where there is an

unhappy developer, there is most likely something wrong with the

product and the way he or she is working on it.

Developer experience matters. Not just because you want to have

happy and productive employees, but because dissatisfaction is

indicative of deeper issues.

In order to get your team engaged and productive again, we need

to take a closer look at the reasons behind this unhappiness.

The Case for Developer Happiness1

https://www.ox.ac.uk/news/2019-10-24-happy-workers-are-13-more-productive
https://link.springer.com/book/10.1007/978-1-4842-4221-6
https://link.springer.com/book/10.1007/978-1-4842-4221-6
https://link.springer.com/chapter/10.1007/978-1-4842-4221-6_10
https://qz.com/1117485/unhappy-people-spread-their-emotions-to-their-coworkers-according-to-research/
https://hbr.org/2018/03/research-how-one-bad-employee-can-corrupt-a-whole-team
https://link.springer.com/chapter/10.1007/978-1-4842-4221-6_10

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 5

Although helpful in weeding out bugs, the traditional software

testing process is part of what is known as imperfect debugging.

Imperfect debugging is not ideal, as it can:

 Getting stuck trying to solve a problem

 Working under time pressure

 Working with poorly written code or bad coding practices

These problems are all interconnected. Poor coding practices

make it difficult to solve problems efficiently, which in turn
increases time pressure, and bad code is often the result of

management trying to save time and effort in the first place.

Another big cause of dissatisfaction is that developers find
themselves spending way too much time on administration and

unnecessary rote tasks. Instead of soaring ahead, getting creative,

and allowing the juices to flow, developers are often bogged down
with tedious tasks such as debugging and version control.

The bottom line is that developers are constantly being

interrupted. And that elusive hyper-productive state of flow,

getting into the zone, is constantly being broken. These problems

highlight the importance of moving away from short-term thinking

and quick fixes to strategically rethinking the entire software
development lifecycle (SDLC) and developer culture.

The rest of this article is devoted to how to get developers back

into the flow, making everyone happier and more productive,
and as a result, shortening release times and improving overall

product quality.

What’s at the Bottom of Developer Dissatisfaction?2

https://www.sciencedirect.com/science/article/pii/S0895717711004596
https://www.bbc.com/worklife/article/20190204-how-to-find-your-flow-state-to-be-peak-creative

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 6

There’s a deep connection between cultivating an elite team

and positive developer experience. In the following section, we’ll

discuss why.

Google’s DevOps Research and Assessment (DORA) team has

identified key markers of an elite team. These are:

 On-demand deployment multiple times a day

 Successful code changes in production in less than a day

 Service restored in less than an hour

 0%–15% rate of failed deployments and code remediation

To pull these numbers off requires incredibly smooth operations.

It calls for a strategy in which teams spend drastically less time

on last-minute emergency hotfixes and patches and get to the
important stuff as quickly as possible, naturally eliminating the

things that make developers miserable. This isn’t just a pipe

dream—it can be possible through a radical change in approach.

Elite Teams are Made Up of Happy Developers3

https://rollbar.com/blog/accelerating-code-quality-with-dora-metrics/

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 7

There are different methodologies for handling the SDLC, such as

the waterfall model, spiral model, and Agile model.

When you stop to think about it, the development lifecycle is

a never-ending loop. If there’s one thing you can learn from

developer dissatisfaction, it’s that getting stuck on a certain phase

of the lifecycle is incredibly frustrating and damaging—both to

code quality as well as employee morale. Rethinking your SDLC

methodology is therefore crucial.

The smarter your SDLC strategy, the faster things will go, the better

the code will get, and the happier your team members will be.

Flow should be a key aspect of your strategy. This means moving

away from a mindset of fixing to building; from rigid linear steps to
continuous deployment with short iteration loops and a greater

emphasis on agility, automation, and dynamic processes.

Let’s start by introducing an important role to your company: the

developer experience engineer.

Developer dissatisfaction related to their work really boils down to

the SDLC (Software Development Lifecycle), which is made up of

the following phases:

1 Requirement analysis

2 Planning

3 Architectural design

4 Software development

5 Testing

6 Deployment

It’s Time to Take a Fresh Approach4

https://economictimes.indiatimes.com/definition/waterfall-model
https://searchsoftwarequality.techtarget.com/definition/spiral-model
http://tryqa.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it/
https://stackify.com/what-is-sdlc/

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 8

If you don’t already have a DXE, it’s definitely worth considering,
especially as your teams grow in size and collaboration becomes

messy and complex. The DXE can have a positive effect on

developer satisfaction, productivity, and experience, as well as

product quality. In addition, such a role can have an overarching

impact on business value and revenue growth. A recent McKinsey

report found that prioritizing developer velocity (not to be

confused with subjecting them to more pressure) can increase

revenue growth by four or five times.

Whether the role of DXE exists in your company yet or not,

someone has to roll up their sleeves and start to put some

conscious effort into these issues.

To understand what needs to be done, let’s take a look at the

connection between high-performing teams and developer

satisfaction.

How can we achieve all this?

The answer lies in continuous code improvement.

With all due respect to Abraham Lincoln’s opinion that “every

man’s happiness is his own responsibility,” it’s not necessarily

the case when it comes to software developers in the workplace.

Engineers should focus on what they do best, that is, designing

and building things. They don’t always know how to optimize

processes, which is an essential component of work satisfaction.

This is where the role of DXE (Developer Experience Engineer)

comes in.

The DXE is in charge of maximizing developer productivity and

boosting their work experience. It’s his or her job to find the right
tools, create the best environment, and instill best practices that

will clear away the obstacles and allow developers to work on what

matters at full force.

Some of the big players have already begun to pay close

attention to the issue of effectiveness. In 2014, Twitter created

an “engineering effectiveness group,” and Google has a huge

“engineering productivity” team devoted to optimizing the

engineering process.

Anyone Call for a Developer Experience Engineer?5

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://rollbar.com/blog/meet-continuous-code-improvement/
https://spectrum.ieee.org/twitters-tips-for-making-software-engineers-more-efficient
https://landing.google.com/engprod/

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 9

CCI provides a quick feedback loop that closely monitors code,

delivering information on code that must be improved, and

providing tools to automatically remediate issues and release

code as quickly as possible to continue the development lifecycle.

So rather than getting stuck on a problem, it allows things to keep

moving. It allows developers to cut to the chase and devote most

of their time improving code rather than tediously monitoring,

debugging, and hunting around for the cause of the problem.

Looking back at Google’s DORA conclusions, continuous code

improvement is at the heart of becoming an elite performer and

creating happy, productive workers. It allows for speed, fewer

errors, and dramatically faster fixes. But before we see how to
implement this, let’s consider some of the great benefits of
adopting a CCI approach.

Innovation is a high-speed game, and it’s only getting more

intense. To keep up with the competition, companies must meet

shorter and shorter release times, putting immense pressure on

development teams. This pressure is counterproductive, resulting

in less testing time, degraded code, and strung out employees.

There is a way to turn this pressure cooker into gold and transform

the sense of urgency into high quality. But to do so requires a shift

in perspective, a shift made possible by CCI.

Development speed and code quality may seem like two

diametrically opposed goals, but CCI thinks of these as two sides

of the same coin. It is a practical solution that allows teams to

release higher quality code at a faster pace.

The CCI approach accepts that code is not a static work of art, but

in fact, an ongoing process that is constantly changing, running, or

breaking. Accepting that code can never be perfect is incredibly

liberating because it frees up developers to start working

dynamically.

The beauty of CCI is that it treats problems as solutions—errors,

bugs, user feedback, and testing aren’t obstacles you get stuck on,

but important signposts that let you know what the problem is and

how to solve it as effectively as possible.

Introducing Continuous Code Improvement6

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 10

If you implement CCI with the right tools, the benefits are immense
and comprehensive:

 Developers release higher-quality code faster and with fewer

bumps in the road.

 Managers enjoy more effective and satisfied team members,
with fewer middle-of-the-night emergency incidents.

 DevOps engineers experience less friction in the SDLC and

smoother operations overall.

 DXEs have a way to increase the satisfaction and productivity

of their team members.

 End-products are of higher quality, with fewer bugs and

new features.

 End-customers experience a better product with faster

problem resolution.

 Company revenues increase through decreased time-to-

market and increased customer satisfaction and loyalty.

So how can we translate all this into action? Let’s take a closer look.

The Deep Impact of Continuous Code Improvement7

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 11

example, that developers can go ahead and improve their code

without having to wait for long testing cycles to finish. The result is
that deployment becomes less risky, new features are introduced

more quickly, and the customer experience is vastly improved and

minimally impacted by new releases.

Tackling Issues Proactively
Code changes constantly. So without a mechanism to cope with the

unexpected, developers are constantly taken by surprise, forced to

resolve issues reactively, and put out fires as they appear on the scene.

Standard automation solutions don’t help matters since they rely

on hard-coded algorithms, often leading to false or missed alarms

and failing to identify unique bugs. Because of this, developers

learn to mistrust these signals and wind up debugging manually,

tediously digging through logs by hand.

With a continuous code improvement strategy, developers gain

real-time visibility into errors and can proactively predict, detect,

and fix issues faster through automated workflows. This can boost
operations considerably, reducing mean time to acknowledge

(MTTA) and mean time to resolution (MTTR).

Don’t Do it Alone
There are many different ways to apply CCI to the development

lifecycle, but tackling this huge task on your own can be quite

daunting. This is where continuous code improvement platforms,

such as Rollbar, can bring immense value.

Continuous code improvement is all about making the wheels of the

SDLC turn faster with less friction so that developers can spend most

of their time in a productive (and joyful) flow.

This section examines how to do this by integrating CCI into the SDLC.

Rethinking Developer Culture
Continuous Code Improvement calls for a big shift in developer

culture and practices. Software has gone through profound

changes in the last decade. Applications have become elusive

creatures, comprising many different microservices and built on a

decentralized cloud infrastructure. As such, they are updated and

changed constantly and rapidly. However, the way developers work

with code has not adapted to this new reality.

CCI allows developers to thrive in a world of modern complex

architecture, with dynamic coding practices, shorter release

cycles, and a new way to deal with errors.

Shorter Release Cycles
A major pillar of CCI is to shorten release cycles using compact

feedback loops. It does so by adding a layer of information to each

stage of the loop, from DevOps to staging to release. This extra

information doesn’t interfere with the lifecycle but actually speeds

it up. It helps predict, detect, and remediate errors in real time.

In addition, developers work on smaller, more manageable pieces

of code, allowing them to focus on the features that matter most

and contribute to a smoother delivery pipeline. This means, for

Jumping Back into the Flow with CCI8

https://rollbar.com/

According to McKinsey, companies that adopt strong tools such

as continuous delivery platforms that drive developer velocity are

65 percent more innovative. Imagine a CCI platform that integrates

seamlessly with all of your environments and tools. Examples

include Kubernetes, Prometheus, and Weaveworks’ Flagger, as well

as issue-tracing tools such as GitHub and Jira.

Once integrated, a CCI platform can:

 Group error patterns and provide accurate and actionable alerts

 Provide top-notch error detection that continues to improve

with automation-grade grouping, powered by machine

learning algorithms that train on databases of billions of errors

	 	Deliver	the	contextual	data	and	metadata	needed	to	fix	code	
as quickly as possible

 Automatically generate tickets to handle critical issues

	 	Proactively	remediate	issues	with	automated	workflows

 Automatically halt or rollback a release or toggle a feature on

or off that contains an error

The	list	of	benefits	goes	on	and	on.	To	start	benefiting	from	CCI	
immediately,	you	just	need	to	find	the	platform	that	works	best	
for	you.	So	let	the	searching	begin!	It’s	worth	the	effort.

eBook // How Debugging Is Changing 12

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 13

Developer experience matters. It’s not just more enjoyable to work

with happy people, it’s also more productive. Luckily, the things

that make developers happy are also the things that make your

code great and your product amazing.

A happy software engineer is someone who feels his or her code

is moving through the pipeline, impacting users. One of the best

ways to do this is by bringing continuous code improvement

into the center of your operations. With the right platform, this

approach will not only make things move faster but also improve

the quality of the work being done—and bring your team back into

a healthy state of flow.

9 Conclusion

eBook // Why Developer Experience Matters and How Continuous Code Improvement Can Help 14

About Rollbar
Rollbar is the leading continuous code improvement platform that proactively discovers, predicts,

and remediates errors with real-time AI-assisted workflows. With Rollbar, developers continually improve
their code and constantly innovate rather than spending time monitoring, investigating, and debugging.

More than 5,000 businesses, including Twilio, Salesforce, Twitch, and Affirm, use Rollbar to deploy better
software, faster while quickly recovering from critical errors as they happen. Learn more at rollbar.com

© 2012-21 ROLLBAR, INC.

https://rollbar.com/
https://twitter.com/rollbar
https://github.com/rollbar
https://www.linkedin.com/company/rollbar/

