
Why You Need Error
Grouping:
From Alerts to Action
How to Sift Through Crash Alerts, Pinpoint
the Right Errors, and Start Debugging Better

Whitepaper

Why You Need Error Grouping: From Alerts to Action // Rollbar 2

Start Debugging
Better

You’ve always known debugging is important. But

did you know that it can take up to half of your

developers’ time? According to a 2019 report

published in ACM Queue, as well as a classic

University of Cambridge study, developers

spend 35–50% of their time debugging.

Debugging, testing, and verification
combined form up to 75% of the
cost of software development
projects, totaling more than $100
billion annually worldwide.

Clearly, anything we can do to make debugging

more efficient will lead to major cost savings—
especially since when developers are trying

to debug, there’s never just one error. A single
problem in the code can easily overwhelm

developers with hundreds or thousands of

alerts, sometimes even more, depending on

the number of end users affected. In fact, if the

code is broken, it’s rare for there to be just one
error, since different parts of the application or

service will be crashing and raising alerts in turn,

creating thousands of potential error messages.

With all this in mind, how can you help your

development team work more efficiently
and improve the software development

experience? In this post, we’ll answer that

question. We’ll also discuss tools you can use

to automate and streamline debugging to find
and resolve problems faster.

Developers have to sift
through all these alerts to
find the ones that really
matter and pinpoint the
root cause of the errors.
This leads to three main problems:

Introduction

1 Wasted Time

First, developers don’t know which errors

are related to the same cause, so they have

to triage them individually and determine

which ones to spend time resolving. Second,

there’s a chance they’ll end up fixing irrelevant
errors and delivering product updates that

don’t actually resolve the problem. And these

irrelevant fixes may introduce new errors,
starting the cycle of wasted time all over again.

2 Noise and Alert Fatigue

The development environment is already filled
with noise coming in from multiple angles:

analytics, APIs, databases, and dependencies.

With too many error alerts coming in on top

of this, the development team may have

a tough time prioritizing tasks, potentially

leading to burn out. Plus, when constantly

faced with numerous alerts, developers may

actually start to ignore them, treating them

as “business as usual.” That means that they

may not react appropriately when faced with

a truly high-priority issue.

3 Dev Team Frustration

When developers have to sift through
alerts, they are less likely to be satisfied
with their day-to-day work. They’d
prefer to be creating something new
and coding—not “wasting time” wading
through errors. If they’re constantly
reacting to alerts, they have less time for
their primary work.

https://queue.acm.org/detail.cfm?id=3068754
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

Why You Need Error Grouping: From Alerts to Action // Rollbar 3

Errors are inevitable—
there’s no such thing as
perfect software. Whether in
development or production,
errors can occur due to a
wide range of reasons that fall
within five main categories:

1 User Related

 Failing to anticipate user action or behavior

2 Code Quality and Validation

 Basic syntax or logic errors within the code;

not validating data for completeness and

correctness; failing to anticipate system

behavior at scale

3 Software Dependencies

 Unavailable libraries or other resources;

databases offline

4 Hardware Dependencies

 System errors or unavailable external systems;

Internet connection problems

5 Security

 New publicly known information-security

vulnerabilities and exposures affecting your

code or dependencies

How Grouping
Helps—
And When It
Can’t

Why You Need Error Grouping: From Alerts to Action // Rollbar 4

Error signals don’t always contain much meaningful

data and context to help developers pinpoint the

source of the problem. What developers really

want—and need—to get their work done efficiently
is to be able to deal with errors as fast as possible.

To accomplish this, they need:

 Trustworthy signals to let them know when a

bug truly needs fixing

 An accurate list of errors to help them plan

and optimize their debugging activities

 A way to separate new errors and

occurrences from known bugs to help them

triage and prioritize

Unfortunately, what developers get instead is a

deluge of unsorted error signals (alerts) based on

crashes that are caused by an underlying error. They

can’t easily identify which alerts have the same root

cause (and can therefore be solved with the same

fix) and which ones are completely separate (and
will eventually require a fix of their own).

Imagine you have a bag of 100 M&M’s. You need to

figure out as quickly as possible how many different
colors there are in the bag and how many M&M’s

there are of each color. How much time would you

save if someone simply told you the answer? Maybe

you’d even appreciate more advanced insights, such

as the odds of choosing a brown one (somewhere

around 12%). That’s exactly the kind of system

developers need—one that sifts through all those
error reports to determine which ones are related,

so they don’t have to do it by hand.

The most efficient solution here is to group errors.
It sounds intuitive, yet too few developers are using

this strategy. With grouping, errors with the same

root cause are sorted together into an organized

and classified list to help developers debug more
effectively.

There are many
advantages to grouping
errors, including:

 Saving time, with no more searching

through all those alerts and logs; the list

of errors is cleared up and organized

 Receiving a more useful error context to
help pinpoint the cause while weeding

out negligible errors as “noise”

 Helping you determine the priority of

each error so you can optimize dev team

resources

 Ensuring that the single right fix will clear
many errors off your plate, since they all

stem from the same cause to begin with

 Opening the door to automation,

since with trustworthy alerts, you can

automate feature flags, create tickets,
and introduce sequential workflows in
many other ways (such as halting or

rolling back a progressive deployment)

https://blogs.sas.com/content/iml/2017/02/20/proportion-of-colors-mandms.html
https://blogs.sas.com/content/iml/2017/02/20/proportion-of-colors-mandms.html

Why You Need Error Grouping: From Alerts to Action // Rollbar 5

The Limits of Grouping Tools
Grouping can help produce better error signals,

but traditional techniques don’t go far enough. Until

now, if a development team wanted to integrate

error grouping into its work process, it would rely on

one or more of a few traditional manual techniques.

For example, the team might aggregate all its

logs and then create filters and queries that are
customized to its data set to cut through the noise.

Tools have been available for a while to help with

grouping errors, yet most of them rely on a “hard-

coded” grouping approach. They identify bugs

based on recognized, manually-curated patterns,

meaning that an individual is writing the rules. By

definition, this will only include existing error types
that have already been identified.

These solutions are analogous to antivirus engines

with hard-coded signatures. They’re great at

spotting malicious patterns that are already out

there, but they’re lousy at “zero-day” attacks

(brand-new threats that nobody has seen before).

They also still require a substantial amount of

investigative and set-up work, which, of course,

takes time and diverts team members who could be

coding productively.

When it comes to reducing noise, the variety of

potential errors is far too large to be maintained

manually—and with ever-changing coding
frameworks, the complexity is only going to increase.

In fact, this type of hard-coded grouping logic

may actually make the problem worse because it

creates:

 False positives: The tool fails to identify

multiple errors stemming from the same issue,

so it won’t weed out all of the errors.

 False negatives: The tool groups errors that

are actually unrelated. This means separate

problems won’t get flagged separately and
may fall between the cracks.

Either way, users won’t get a stack-ranked error list

they can rely on. And without reliable and accurate

grouping from a tool they trust, users will often

choose to group errors manually or keep dealing

with the flood of errors in some other way. So while
error grouping holds a lot of potential, today’s fast-

paced development environments need a more

flexible model.

Why You Need Error Grouping: From Alerts to Action // Rollbar 6

Solution:
Grouping—
with Continuous
Learning

Today, many developers are still opting to handle

grouping manually. In fact, a 2017 academic study on

debugging strategies among Windows and Android

developers found that by and large, developers

don’t believe fault-localization tools can help find
tough bugs or pinpoint the source of errors. They

also think that manual debugging techniques, like

stack tracing, are sufficient. That’s probably because
many tools that promise to make debugging more

efficient are both inflexible and inaccurate (as we’ve
just seen).

Also, when discussing the possibility of switching to

better fault-localization techniques, the developers

in the study resisted change due to the learning

curve, feared the new technique wouldn’t work well

with existing environments, and doubted it could do

what it claimed to do.

Clearly, to win back developers’ trust, you need

a tool that not only provides continuous learning

for more intelligent error grouping, but is also

easy to learn and use. And it must provide a level

of accuracy and reliability that developers can’t

achieve otherwise.

For today’s constantly changing development

environments, the best solution is a continuously

learning grouping engine that can:

 Detect new and unique error types

 Reduce noise and alert fatigue with more

accurate error signals

 Prioritize what to fix by grouping root causes
and allowing users to see error context
(functions impacted, what browser/IPs are

affected, and other factors)

Also, a tool with a built-in continuous learning

engine makes development teams more productive

because it lets them respond to critical errors faster.

They spend less time digging through logs or using

other manual methods to find the root causes of
errors and then attempting to fix them.

https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1037&context=etd_coll_all

Why You Need Error Grouping: From Alerts to Action // Rollbar 7

Rollbar’s
Automation—
Grade Grouping

Rollbar is a modern, continuous code-

improvement tool designed to streamline the

software development experience. This is the

solution developers have been waiting for.

It uses machine learning to intelligently
group bugs so developers can find and
fix problems faster—and get back to
creating code.

Rollbar analyzes both exceptions and log

messages. Exceptions are clustered by platform,

environment, error class, and stack trace

information. Message-type items are grouped by

message text (stripping out number-like and date-

like portions). Rollbar’s algorithm uses three guiding

principles, based on developers’ needs:

1 Occurrences with the same root cause are

combined (this eliminates false positives).

2 Occurrences with different root causes

are kept separate (this eliminates false

negatives).

3 Performance is maximized by learning from
millions of errors and adapting the algorithm

accordingly.

These principles ensure that noise is minimized—
and so are missed bugs. It also makes triaging

easier for developers because duplicates are

cleared from the error list, letting the real issues

emerge more clearly. By eliminating a big chunk of

the debugging process, developers will be able to

respond to errors faster—with less work.

The Automation-Grade Grouping that powers

Rollbar is continuously updated and improved, so

you’ll see better recognition as Rollbar becomes

familiar with your code. You can also create

custom fingerprint rules to override the default
behavior and reach the level of grouping accuracy

you want even faster. Rollbar’s grouping behavior

adapts to your projects and environments, as
needed, in ways that standard grouping algorithms

can’t. The ultimate result is better code and a

better quality product.

Conclusion

The goal of software development is to get a reliable

product into customers’ hands. Companies spend

billions of dollars a year on debugging throughout

the development and production environments to

reduce application crashes and increase customer

satisfaction.

Rollbar’s continuous code-improvement solution

works just as hard as your development team
does. With Automation-Grade Grouping, Rollbar

finds bugs before users do and helps you fix them
before they escalate, saving time and money while

improving the software development experience,

code quality, and your release cycle.

To start debugging better with Rollbar, request a

demo or try it out for free.

https://rollbar.com/request-a-demo/
https://rollbar.com/request-a-demo/
https://rollbar.com/signup/

Rollbar is the leading continuous code improvement platform that enables

developers to proactively discover and resolve issues in their code. With Rollbar,

developers focus on deploying better software faster, knowing they can quickly

recover from critical errors as they happen. Learn more at Rollbar.com

© 2012-21 ROLLBAR, INC.

http://www.rollbar.com
https://rollbar.com/
https://twitter.com/rollbar
https://github.com/rollbar
https://www.linkedin.com/company/rollbar/

