
eBook

How Debugging
Is Changing

3 Introduction

4 Part 1: Testing Alone Isn’t Working

5 Part 2: Imperfect Debugging

6 Part 3: Strategies to Improve Debugging

6 Automation

6 Log Aggregation

7 Observability

8 Part 4: Debug Faster with Continuous Code Improvement

8 Grouping

8 Contextual Information

9 Connecting Errors Across All Environments

10 Part 5: Conclusion

Table of Contents

eBook // How Debugging Is Changing 3

Introduction

Up to 50% of developer’s time is spent finding, triaging, and fixing
bugs rather than working on new features or deploying updates.

Since a development team’s business value is often measured by

how frequently and how fast new features are successfully deployed

to production, the amount of time spent on bugs can be troubling.

And as software becomes more complex and the systems that

deploy it become more diverse, the goals of better software
quality and less time spent debugging become even more

challenging. For most organizations, errors and debugging are a
significant drag on the software development lifecycle (SDLC).

We are going to take a look at the problems in debugging software

errors as a way to understand how to minimize the costs and time

of debugging. We’ll look at why many software testing strategies

fail, a few alternate strategies that can improve debugging
processes, and specifically how tools like error monitoring and
other components of continuous code improvement can provide

an improved understanding of debugging issues. The goal is that

by understanding debugging across all stages of the SDLC, there
should be fewer bugs in your code and they should be easier to

resolve, and fixed sooner, before they have an impact in production.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

eBook // How Debugging Is Changing 4

 Testing Alone Isn’t Working1

Software testing is supposed to catch defects and provide the

information needed to debug and fix them before they make it to
production. Developer unit tests catch logic issues, continuous
integration/continuous deployment (CI/CD) tools run integration
tests, QA executes functional and automated tests of use cases,
and users give software a final check during UAT. In practice,
however, software is usually much more complicated than
anticipated, and this process has many failure points.

Here are some examples of the complications:

 A developer’s local environment rarely mirrors the

complexity of production, and his or her unit tests can miss

errors that become obvious in production.

 Testers rarely have the time or budget to create 100%

coverage, leaving holes in use case testing.

 A reasonably-sized code base interacts with many other

services, both in-house and external, injecting unknowns and

dependencies into the software.

 Modern software stacks are much more complex than their

monolithic counterparts from years ago. Microservices,
cloud integration, and CI/CD components interact with the

code in multiple ways making it extremely challenging to

test.

As a result of this complexity, bugs often slip through the process
and into production. Once those bugs are found, it’s challenging to
dig through the complexity, variation in environments, integrated
tools, and cloud-based deployments to find the information to
quickly resolve the bugs.

Debugging these issues costs time and, invariably, costs the
business a lot of money. A study by the University of Cambridge

noted that software debugging costs businesses $312 billion per

year and growing. With the advent of more complex software

stacks, cloud-based infrastructure, and microservices integration,
this number will grow as testing itself becomes more complex and

difficult.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

eBook // How Debugging Is Changing 5

 Imperfect Debugging2

Although helpful in weeding out bugs, the traditional software
testing process is part of what is known as imperfect debugging.

Imperfect debugging is not ideal, as it can:

 Increase the possibility of introducing other failures

 Fail to resolve the identified failure

 Decrease the mean time between software failures (MTBSF)

On the other hand, debugging is considered perfect when:

 Debugging corresponds to an improvement

to the software’s reliability

 The failure is corrected

 The MTBSF increases

The effect of imperfect debugging has a direct correlation on

software cost and a negative effect on software release time.

In this chart based on the IEEE Study “A Study of the Effect

of Imperfect Debugging on Software Cost”, we can see the
relationship of testing level p and software cost C:

p

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C($10)

65.257

57.132

51.023

46.268

42.455

39.315

36.674

34.410

32.442

30.708

29.166

Change of Software Cost
with Testing-Level p

https://www.sciencedirect.com/science/article/pii/S0895717711004596
https://ieeexplore.ieee.org/document/1199075
https://ieeexplore.ieee.org/document/1199075

eBook // How Debugging Is Changing 6

bugs. The more testing drifts in the wrong direction (to the right
and closer to launch) the higher the likelihood that detected bugs
will move to technical debt instead of being addressed.

Log Aggregation
Log aggregation is another method used in improving the

debugging process. The collection and analysis of log data

provides operational visibility across the stack. Log aggregation,
allows for recording and even possibly replay of events leading

up to a software crash or error. Log management and features

such as search capabilities, data visualization, and programmable
event triggers lead to a holistic view of events, traces, and event
information in code.

However, while log aggregation is useful, it can be costly and hard
to standardize. With increased event tracking or additional events

triggered by always-on systems such as microservices or IoT
devices, businesses face the challenge of rising data storage costs,
integration difficulties, and the need for more advanced querying
technologies against the reising volumes of data.

But, even if most information does get logged, the equally
challenging task of making sense of all that data arises.

Aggregation, collection, and analysis of log data have been
common practice, but it still isn’t enough. Intelligence around this
aggregation plus integration with your other business tools (such
as ticketing systems) are necessary to realize its full business
value. Tools that can automate and make intelligent decisions

about aggregation and grouping can really simplify this task.

Now let’s look at three different strategies that can be used

to move towards more perfect debugging—automation, log
aggregation, and observability.

Automation
Automation practices that bridge the gap between developer and

operation teams, such as CI/CD, can in some instances make it
more difficult to track down issues. However, the same tool that
causes these issues can also lead to earlier bug detection and

mitigation. Tools such as Jenkins and CircleCI encourage the goal

of consistent and automated builds and tests. This encourages

teams to commit code more frequently, which leads to the
concept of continuous testing—automated regression and other

tests run as part of the CI/CD process.

Automated tests, using methods such as Test-Driven Development
(TDD) or Behavior-Driven Development (BDD), and running more
frequently on smaller sets of code changes, make it much easier
to isolate changes that could have caused defects. Less code has

changed, fewer people have touched the code, and fewer features
were implemented. Therefore, the process of finding the root
cause becomes faster and simpler.

To get even more usefulness out of these automation tools,
they can be moved as close to the developer’s unit-testing
environment as possible. This is known as “shifting left.” Shifting

left espouses testing earlier in the SDLC on smaller amounts of
code, leading to a lower mean-time-to-fix (MTTF) for potential

Strategies to Improve Debugging3

https://www.jenkins.io/
https://circleci.com/
https://www.agilealliance.org/glossary/tdd/
https://www.agilealliance.org/glossary/tdd/
https://www.katalon.com/resources-center/blog/cucumber-bdd-automation-testing/

Observability
Observability - the measure of how well the state of the stack can
be inferred through knowledge of its outputs - is another strategy
for debugging. Observability means that you have visibility into the

system’s behavior to better understand what’s happening across

the stack. If logging shows what the stack is doing, observability
shows why it is doing it. In observability, manual querying and step
debugging are replaced by correlation analysis and advanced

analytics.

One newer concept in observability is storing every state of

every debugging step into an indexed, searchable database.
These tools store every exception, warning, error, and log entry
in a data system typically using schema-less, search engine
frameworks like Lucene in Elasticsearch. This is referred to as

omniscient debugging and it holds promise of quickly identifying

and historically tracing known patterns through a combination of

machine learning and data science/engineering technologies.

However, according to a recent IDC study, 50% of all organizations
process more than 100GB of data a day. An omniscient debugging

system would increase this requirement many fold.

Coupled with the fact that in a world where more devices are

interconnected through IoT, this would further exacerbate this data
requirement and indexing capability concerns. Tools are needed to

alleviate this demand.

eBook // How Debugging Is Changing 7

The 4 pillars of observability from the Twitter

Observability Engineering team’s charter

Monitoring

Alert / Visualization

Distributed Systems
Tracing Infrastructure

Log Aggregation /
Analytics

Four Pillars
of Observability

eBook // How Debugging Is Changing 8

Given that a considerable amount of developer time is spent on

debugging, it would make sense to use tools to automate and
consolidate the three strategies described above. A continuous

code improvement (CCI) platform provides all three of the solutions
discussed above for easier debugging.

 It automates much of the effort in debugging errors through

grouping, deduping, triaging, integration into communication

channels for alerts, and more.

 It aggregates logs from all your stacks, environments, and

systems, with an intuitive interface to search and understand

those mountains of information.

 It provides deep observability into your systems through

real-time contextual information about errors.

Let’s look at a few of these features in detail: grouping, contextual
information, and connecting information across environments.

Grouping
Developers want a solution to let them proactively deal with bugs,
but most solutions can’t accurately identify unique bugs. Instead,
they treat every bug as a unique instance, leaving developers stuck
with noisy solutions or learning about errors from customers. They

have to be reactive and comb through errors manually, dealing
with notification spam or searching through the errors as if they
were logs.

A CCI solution uses machine learning to determine error patterns

and identify error types to understand when errors are the same

or different. A fingerprint is given to identify every occurrence
of an event and then combines events accordingly. If it sees the

same root cause, for example, it groups those errors into one
occurrence. If it sees similar exception class names and properties,
it combines them into another occurrence. This method gets rid of

missed bugs and noise and makes it easy to not only classify and

prioritize errors but also automate the response to errors. Because

errors are grouped accurately, a CCI solution can automatically
trigger workflows based on any new bugs or regressions that are
detected to proactively address issues and minimize their impact.

Contextual Information
Logs are great. And lots of them are even better, but they are also
a huge problem when it comes to debugging. There are so many

logs that finding a particular problem is like looking for a needle in
a haystack.

On the other end of the spectrum, there is APM. It’s great for following
flows through an application and between applications. But APM
solutions are more focused on latency and less focused on errors.

CCI fills the middle ground, providing all the code-context and
contextual metadata needed to move quickly and resolve errors.

The stack trace is revealed, along with the exact line of code that
caused the error and the related git blame information. HTTP
request parameter values, local variable values that happened at
runtime, and more, are also exposed.

4 Debug Faster with Continuous Code Improvement

Connecting Errors Across All Environments

By using CCI across all environments in the SDLC, users gain
observability.

In test environments, CCI accelerates testing by identifying root
cause and helping to quickly triage and communicate errors. In

staging, CCI improves release readiness by quickly identifying and
tracking errors against complex production-mirror environments.
And in production, CCI implements live monitoring on production
apps so errors in your code are alerted and understood before

customers are affected. But best of all, when CCI is used across
all these environments, it adds even greater value, by providing
a holistic view of errors, including log messages, where the error
first occurred, if the error has been fixed in a newer version/
environment, and occurrences of the error in each environment.
Referring back to the testing discussion above, CCI makes it easier
for teams to make up the time cost by reducing the need to get all

the way to p=1 and also cutting the dollar cost at the same time.

CCI provides true insight into why, how, and where errors are
occurring at all stages of development.

eBook // How Debugging Is Changing 9

eBook // How Debugging Is Changing 10

Testing is an imperfect process, and debugging can be expensive.
However, there are strategies and tools that can help reduce the
time and effort in debugging, and increase the quality of code and
reliability of deployments.

Continuous code improvement solutions can help track down and

fix errors, turn tests from red to green faster, reduce production
issues, improve developer confidence, and ultimately improve
business bottom lines.

5 Conclusion

eBook // How Debugging Is Changing 11

About Rollbar
Rollbar is the leading continuous code improvement platform that proactively discovers, predicts,

and remediates errors with real-time AI-assisted workflows. With Rollbar, developers continually improve
their code and constantly innovate rather than spending time monitoring, investigating, and debugging.

More than 5,000 businesses, including Twilio, Salesforce, Twitch, and Affirm, use Rollbar to deploy better
software, faster while quickly recovering from critical errors as they happen. Learn more at rollbar.com

© 2012-21 ROLLBAR, INC.

https://rollbar.com/
https://twitter.com/rollbar
https://github.com/rollbar
https://www.linkedin.com/company/rollbar/

